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Abstract
Water is a fundamental necessity for people’s well-being and the ecosystem’s sustainability; however, its toxicity due to
agrochemicals usage for food production leads to the deterioration of water quality. The poor water quality diminishes its
reusability, thus limiting efficient water usage. Organic farming is one of the best ways that does not only reduce the deterioration
of water quality but also decrease food toxicity. In organic farming, the crop is grown with no/less chemical usage. Besides,
organic farming maintains biodiversity and reduces the anthropogenic footprint on soil, air, water, wildlife, and especially on the
farming communities. Fields that are organically managed continuously for years have fewer pest populations and were attributed
to increased biodiversity and abundance of multi-trophic interactions as well as to changes in plant metabolites. Fewer insect
pests (pathogen vectors), in turn, would result in fewer crop diseases and increase crop production. This review highlights that
organic farming may play a critical role in the reduction of pests and pathogens, which eventually would reduce the need for
chemical reagents to protect crops, improving yield quality and water reusability.
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Introduction

Water is a remarkable natural resource being vital for the
sustenance of any ecosystem that makes it a prerequisite to
be used with utmost care. The food and agriculture organiza-
tion of the United Nations (FAO) had reported that, among
different anthropogenic activities, agriculture takes one of the
most significant shares in water usage (Frenken and Kiersch
2011). Depending upon countries, at least 70 to 90% of water
is consumed in agriculture-related activities. Due to the advent
of green revolution technologies in the last decade, tremen-
dous growth and improvement in global food security had
occurred (Evenson and Gollin 2003; Qaim 2017). However,

FAO reported that approximately 800 million people are still
undernourished, mainly from developing countries (FAO
2017). By 2050, the human population is projected to increase
by 50%, which will further cause a burden on natural re-
sources, critically on clean water and agriculture. According
to studies, to keep up with the burgeoning human population,
global agricultural productivity has to increase by 100% until
2050 (Godfray et al. 2010; Hertel 2015). Due to the further
eagerness to use renewable energy sources for a healthier en-
vironment, farming has become much more intensified than
ever before as the demand for biofuel is also increasing along
with other plant-derived products. On the negative side, agri-
culture has been associated in many ways to diminish the
water quality that includes but is not limited to nutrient and
pesticides leaching and runoff, eutrophication, pathogen accu-
mulation in water bodies, etc. (Sivaranjani and Rakshit 2019).
Thus, the onus lies on agriculture to use water efficiently to
have sustainable growth and increase productivity.

To ensure stable future development, it is critical to safe-
guard the surface and groundwater resources that are limited
for consumption. In spite of limited availability, water has
been reported to be often polluted with agrochemicals inten-
sively applied in agriculture, e.g., pesticides, insecticides, her-
bicides, weedicides, fungicides that are detrimental to human
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health and the environment (Xiaofei et al. 2008; Fernandez-
Gomez et al. 2012; Rezaei et al. 2019). Indeed, a recent study
reported worldwide use of pesticides over four million tons
per year (Weber 2018). In a river basin, surrounded by a wide
range of anthropogenic activities, it is found to have pollutants
ranging from pesticides to personal care products (Fernandez-
Gomez et al. 2012). Diazinon, a potent organophosphorus
insecticide, WHO classified as chemicals with moderate haz-
ard Class II was found to be stable in both water and soil and
can exist in the environment for several months (Wang and
Shih 2016). Moreover, some agrochemicals contain persistent
organic pollutants (POPs) that are not susceptible to degrada-
tion and can be found even for years (Chandra et al. 2015).
Thus, the stable agrochemicals accumulate and bio-magnifies,
leading to bioconcentration of several tens of thousands-fold
relative to initial concentration (Hernández et al. 2013). Apart
from being a threat to humans, these chemicals have the po-
tential to affect some other beneficial organisms and destabi-
lize the ecosystem pertaining to its high stability in water
(Simeonov et al. 2013). It is sufficed to say modern agriculture
needs good water management for increasing the sustainabil-
ity of food security.

Indeed, water treatment techniques are available, although
it is challenging to prevent the contamination of water from
agricultural sources as the economic conditions of small
farmers from developing countries impedes a successful im-
plementation of water management techniques. Developing
countries cannot afford expensive water treatment techniques,
leading to poor water quality (Sivaranjani and Rakshit 2019).
Moreover, the use of agrochemicals seems to increase the crop
yield manifold; however, in long-term usage, it had been
found to decrease the soil quality and the water holding ca-
pacity. Eventually, the land becomes infertile, causing a de-
crease in crop production (Fox et al. 2007). This suggests that
the use of chemicals is not only detrimental for humans and
the environment but also ultimately bad for sustained food
production.

Unless water management techniques get affordable, alter-
nate strategies that are environmentally friendly and use water
efficiently for agriculture needs to be exploited more. The
current report suggests that worldwide there is a trend of a
significant increase in organic farming and is largely seen as
a substitute to agrochemical-free farming that, in turn, will
enhance the water reusability from agricultural sources (Tal
2018). Organic farming had been first introduced in the early
1900s and is defined inmany ways (Adamchak 2021). Simply
put, it can be said, harnessing the natural resources for the
improvement and sustainable food production. Here, we syn-
thesized the literature to show how organic farming has mul-
tifunctional effects with respect to the sustainable ecosystem,
food toxicity, and water reusability. We also highlight the
molecular mechanism of organic farming benefitting the eco-
system, which may be useful for the agricultural industry to

apply in organic fields. Understanding the underlying mecha-
nism of organic farming will not only increase its’ efficiency
but will also increase the agricultural water reusability along
with significantly reducing the food toxicity. The current chal-
lenges faced in organic farming have also been addressed here
that would lead to future research directions.

Organic farming effects on ecosystem

Pests and pathogens

Pests and pathogens of crops are one of the major challenges
that limit the increase in production. Controlling the pest pop-
ulation in fields is necessary as it destroys crops with its for-
aging activity and pests like phloem-feeding insects remove
nutrients from phloem sap that is detrimental to plant produc-
tivity (Carena and Glogoza 2004). Moreover, insects have the
potential for acting as vectors for many pathogens, e.g., fungi,
phytoplasmas, bacteria, viruses, which further hampers food
production (Perilla-henao and Casteel 2016; Eigenbrode et al.
2018; Bera et al. 2020). Worldwide, it has been estimated that
pests, pathogens, and weeds, altogether cause around 40%
loss in major crops (Oerke 2006). In conventional farming,
through the use of chemicals (insecticides, weedicides, fungi-
cides, etc.) and disease-resistant cultivars (monocropping)
assisted in increasing crop production. However, at the same
time, it has also facilitated the increase in chemicals-resistant
insects or weeds and resistant-breaking pathogens. Along with
this, the use of chemicals had a significant negative impact on
the environment and decreased the quality of water. Thus,
organic farming is considered a great alternative that is more
environmentally friendly, durable, and can be exploited to
decrease pests and pathogens in crops.

Among all the pathogens transmitted by insects, viruses are
of special importance as it had been estimated that viruses
constitute approximately 50% of all the epidemic outbreaks
in the field (Anderson et al. 2004; Parizad et al. 2012b; Nateqi
et al. 2014, 2015; Movi et al. 2021). One of the main reasons
that explain frequent viral epidemic outbreaks is the fast-
evolving capacity of viruses that breaks the resistance bred
into the cultivars (Berzal-Herranz et al. 1995; de la Cruz
et al. 1997; Gilardi et al. 2004; Jones 2009; López-Córcoles
et al. 2011; Moury and Verdin 2012; Elena et al. 2014; Bera
et al. 2017, 2018; Dennehy 2017). Thus, farmers rely more on
pesticides and insecticides to remove insects from fields and
prevent viral epidemics. However, as the virus evolves to
break the host resistance or expand its host range, viruses
might get less virulent in other susceptible hosts indicating
the fitness costs associated with resistance breaking mutant
strains (Moreno-Pérez et al. 2016; Bera et al. 2016, 2017,
Bera, 2018). The fitness costs might occur as mutations can
disrupt the multi-functionality of a viral protein and the
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functional elements in viral RNA that are necessary for viru-
lent infection (May et al. 2020; Ilyas et al. 2021; Liu et al.
2021). A recent review by Roossinck and García-Arenal
2015, suggested that large-scale mono-cropping and the loss
of species richness in fields are the major contributing factors
that lead to the rapid virus evolution and emergence of virus
epidemics (Roossinck and García-Arenal 2015). Therefore, it
is sufficed to say that the use of organic farming that promotes
natural practices to keep the pest population low along with
enriching the species diversity in the field will impede the
rapid virus evolution and prevent viral epidemics. Indeed,
studies have shown that an increase in biodiversity leads to a
decrease in viral infection risk (Pagán et al. 2012; Rodelo-
Urrego et al. 2013).

Currently, in organic farming, strategies are implemented
to reduce the risk of viral disease outbreaks. For example, use
of disease-free seeds or propagatingmaterials, spatial isolation
and removal of specific weeds known for attracting pests or
reservoir of pathogens (van Bruggen et al. 2016). Growing
susceptible crops is encouraged at certain times of the year
that is known to have a low risk from pathogens and pests
(van Bruggen et al. 2016). The practice of using disease-free
propagating material is a prerequisite to reduce the risk of
spreading pathogens; as a case in point, it had been reported
that saffron plants that are propagated by their corms might
had been infected with a novel virus called Saffron latent virus
(SaLV) and got distributed to all saffron fields of Iran (Sabze
et al. 2012; Parizad et al. 2016, 2017a, 2017b, 2018).
Subsequent studies from the same research group showed that
the virus might have negatively impacted saffron’s secondary
metabolites that are of high economic importance (Parizad
et al. 2012a, 2018, 2019; Movi et al. 2018; Moratalla-López
et al. 2021). Thus, improving the certified and virus-free prop-
agation organs is crucial, which is currently done for potatoes,
strawberries, and flower bulbs (Daugaard 1999). Moreover, a
current study did a comparison between conventional and
organic farming and reported that viral infection risk was in-
deed lower in organic farms in two non-consecutive years
(Lázaro et al. 2019).

As the use of chemicals is strictly prohibited in organic
farming, farmers are encouraged to follow practices that neg-
atively affect pests or promote natural enemies of pests in the
field that includes enriching the species diversity. In a broad
sense, species diversity is defined as the number of different
species present in a particular area. A way to prevent insect
vectors from probing plants is the use of straw or plastic
mulches or oils that repel aphids (Stapleton and Summers
2002; Schuster et al. 2009). Straw mulch was indeed reported
to be effective in decreasing viral infections (Saucke and
Doring 2004). Another study showed farmers from Africa
produced maize without using any pesticides (Eisenstein
2020). A push-pull cropping strategy was implemented;
grasses were planted near the maize plots that “pull” a

common pest, the maize stalk borer (Busseola fusca), away
from crops, and simultaneously the maize plants attracted par-
asitic wasps that prey on the stalk borer. Moreover, legumes
were grown with the maize to increase the nitrogen content of
the soil and produce compounds that ‘push’ away pests and
kill off a genus of invasive weed (Eisenstein 2020). Thus in
line with the above study, several studies also suggested that
species richness is vital for keeping pests and diseases in
check (Pagán et al. 2012; Rodelo-Urrego et al. 2013;
Muneret et al. 2019). However, a study by Crowder et al.
2010 suggested that more than richness, evenness of species
was critical to keep pests densities low that means to have
negative impact on pests population it is vital to consider an
equal number of different species more than the species diver-
sity in a community (Crowder et al. 2010).

Molecular mechanism mediating the effect of organic
farming

Though in the past few years, numerous studies got published
highlighting the benefits of organic farming; however, the
underlying molecular mechanism that keeps the pest infesta-
tion and disease risk low in the organically managed field is
still in the nascent stage. One of the reasons that can be attrib-
uted to low infestation is the absence of any fertilizer usage in
organic farming. Plants tend to have lower nitrogen content
that, in turn, make them less attractive to pests, which might
explain the lower risk of pest infestation in an organic system
(Mattson 1980; Drinkwater et al. 1995; Garratt et al. 2011;
Megali et al. 2014). Studies on plants and mycorrhizal fungi
association reported induction of plant systemic resistance that
might be responsible for decreasing susceptibility to pests and
pathogens (Fritz et al. 2006; Pozo and Azcón-Aguilar 2007;
Kempel et al. 2010; Vannette and Hunter 2010).

Moreover, there is a rising trend of soil microbes’ usage in
organic farms that makes the plant more resilient to pests;
studies have demonstrated that it is often mediated by modu-
lation of plant signalling and defence responses (Gilbert and
Johnson 2015; Bastías et al. 2018; Zhu et al. 2018; Howard
et al. 2020). The study of Blundell et al. 2020 is of particular
relevance here, demonstrating leafhopper pests prefer tomato
plants that are conventionally managed over the organically
managed system (Blundell et al. 2020). Due to the presence of
soil microbes in the organically managed system, the modu-
lation of a phytohormone, salicylic acid (SA), was speculated
to be mediating the behavioural changes in pests. This finding
is in line with other studies that also reported behavioural
changes in pests were often mediated through modulation in
phytohormones pathway, specifically, Jasmonic and salicylic
acid (Kessler et al. 2004; Morkunas and Van 2011; Abe et al.
2012; Bera et al. 2019, 2020).

Apart from phytohormones, there are studies indicating the
critical role of plant volatiles, amino-acid content, and
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secondary metabolites in plant defence response against pests
and pathogens (Zaynab et al. 2018; Lee et al. 2021a). A pre-
cursor of JA, 12-oxo-phytodienoic Acid, was shown to en-
hance callose deposition in JA deficient plants and increased
resistance against aphids (Varsani et al. 2019). Some of the
major plant secondary metabolites, e.g., phenolics and ter-
penes, had been documented acting as a defence response
against insects, viruses, fungi, and bacteria (Walling 2000;
An et al. 2001; Ito et al. 2007; Nuessly et al. 2007; Wang
et al. 2007; Keeling 2008; Velasco et al. 2013; Shen et al.
2015). However, the role of secondary metabolites in organic
farming to manage pests and pathogens remains to be inves-
tigated. Nevertheless, it had been shown that plants grown in
an organic system tend to have higher phenolic content
(Barański et al. 2014; Veberic 2016). Thus, it would be tempt-
ing to speculate that secondary metabolites in organic farming
might be playing a vital role in keeping pests and disease risks
low.

Organic farming effect on food toxicity

Due to the growing public consciousness on a clean environ-
ment related to the use of agrochemicals and the concerns
about their health and food toxicity, it has been reported that
approximately 97% of the people are worried about chemical
residues in the environment, especially in food (Pimentel and
Greiner 1997; Bansal 2017). Indeed around 35% of foods in
the US contain measurable pesticide residues, and 1–3% of
these foods have levels above the approved tolerance level
(National Research Council 1993). Among all, fruits and veg-
etables have higher pollutants since a tremendous amount of
chemicals are used for them, and this toxicity can remain even
after washing and peeling them (Wiles and Campbell 1994).

Based on the functional, biological, nutritional, sensual,
ethical, and “authentic” factors, food safety can be evaluated
in the following way: food output with rich in quality and
adequate quantity, growing them within the natural cycles
and using local sources, preservation and subsequent im-
provement of the fertility of the soil, safe environment, tastes
better, animal welfare, and minimal processing (Bansal 2017).
Based on the criteria mentioned above, organic crops have a
high standard in food safety. Moreover, organic crops are
generally characterized by a higher amount of dry matter,
some minerals (Fe, Mg), and antioxidant micronutrients (phe-
nols, resveratrol). With respect to the food toxicity, organic
products, apart from their high nutritional value and minimum
artificial chemical residues, are also enriched in affirmative
aspects, such as in antioxidant phytomicronutrients content,
and have less nitrate accumulation and toxic phytochemical
residue levels (Lairon 2010; Bansal 2017).

Prohibiting the use of toxic chemicals, including pesticides,
fungicides, and herbicides, in organic agriculture is a really

valuable effort, conserving farmers’ health and environmental
biodiversity and well-being (Lairon 2010). Accordingly, food
is healthier in organic than in conventional farming since it is
based on the precautionary approaches in which organic reg-
ulations and food safety evaluation are considered (Hansen
et al. 2002). The high standards of chemical-free organic
foods are undoubtedly achievable by the less usage of nitro-
gen (decreasing the nitrate concentrations) and limiting the
human-made chemicals and other environmentally toxic com-
pounds (leading to nearly no pesticide residues); thus, bring-
ing about the least venture of food toxicity (chemicals con-
tamination) (Hansen et al. 2002). In a broad range of organic
products (94–100%), no pesticide remnants had been detect-
ed. Also, organic vegetables had considerably fewer amount
of nitrates. In fact, using composts in organic agriculture in-
stead of chemical fertilizers gives rise to lower nitrate contents
in some crops (Lairon et al. 1984a, b). Nitrogen-rich organic
fertilizers will produce less nitrate, although, in some desirable
conditions, they can contribute to high nitrate accumulations
(Lairon et al. 1985; Termine et al. 1987). Regarding the level
of food contamination as per environmental pollution, there
are a lot of studies showing no or fewer (all being below the
threshold) chemical remnants in organic samples compared to
conventional products (Poulsen and Andersen 2003;
Tasiopoulou et al. 2007). These residues in conventional prod-
ucts can be toxic due to their detrimental effect as mutagens
and carcinogens. Hence by assessment of the toxicity, the
risky chemicals should be eliminated (Lairon 2010).

However, despite the strict limitation of pesticide usage, a
number of certain chemicals can be applied in organic farm-
ing. For instance, some nonsynthetic pesticide products, con-
sidering their origin, environmental influence, and the possi-
ble remaining as residues, have been allowed to use. These
compounds are copper sulfate, copper ammonium carbonate,
pyrethrum, sulfur, copper oxychloride, soft soap, and derris
(rotenone). In addition, some plant oils, such as neem, and
microbial agents, such as Bacillus thuringiensis (Bt), can be
used. Due to their simple structure than conventional farming
materials, these compounds have a faster rate of breaking
down (Chaudhari et al. 2021); thus, makes them appealing
to be used in organic farming.

Regarding the comparison of nutritional properties of food
in organic and conventional farming, two categories are con-
sidered. First primary essential nutrients (e.g., water, proteins,
fiber, carbohydrates, vitamins, fats, dry matter, and minerals)
and second, secondary metabolites (e.g., terpenes,
phytonutrients phenolic, alkaloids, and sulfur-containing
compounds). Through diverse researches, it has been revealed
that there are a remarkably higher amount of these nutrients in
organic crops than non-organic ones (Brandt and Mølgaard
2001). However, this is hard to confirm this conclusion as
some studies have repudiated these results (Bansal 2017).
Nevertheless, to summarize all the data, organic products do
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reduce food toxicity and may contain more nutrients in com-
parison to traditional products.

Organic farming effect on water reusability

Today, it is inevitably essential to protect the limited surface
and groundwater water bodies since the annual usage of pes-
ticides has been estimated more than four million tons, which
is harmful to human health and environmental resources
(Weber 2018). Not only are most of these compounds highly
stable and resistant in the environment, but also they can bio-
magnify in organisms living in the water (Rezaei et al. 2019).
As a case in point, diazinon (Organophosphorus) persists in
water and soil even for several months (Cruz et al. 2017).
Moreover, in recent decades, a substantial amount of this in-
secticide has been detected in different water and soil parts
(Perry 2008; Esfandian et al. 2016). Accordingly, in organic
agriculture, due to the significantly reduced usage of
chemicals applied than conventional farming systems, espe-
cially nitrogen and phosphorous ones, the water contamina-
tion is less, increasing the water reusability (Trewavas 2004).

Moreover, organic farming depends on improving soil
structure by using compost as an alternative to inorganic fer-
tilizers and animal manure to provide the plant’s nitrogen
source. It has been indicated that compost application de-
creases nitrogen and phosphorus runoff and their concentra-
tion in wastes, increasing water reusability (Benitez et al.
2003; Wolkowski 2003; Evanylo et al. 2008). Besides, nitrate
contamination in groundwater can be inhibited by assessing
the nitrogen mineralization rate and using a nitrogen-
scavenging cover crop. In compost-rectified soils, the possible
venture of exceeding the concentration of nitrogen and phos-
phorus in runoff water can be balanced by enhancing infiltra-
tion, porosity, and water-holding capacity; thus, diminishing
the runoff bulk (Evanylo et al. 2008).

In organic farming, the practices by which the conservation
and recycling of nutrients in the farming system are imple-
mented will guarantee and prevent water contamination. In
field management, if the nutrient balances keep along with
holding water inside the fields, diminishing and preventing
water flows onto/into the fields and vice versa, the nutrients
will get conserved within the field besides preserving the en-
vironment. In addition, planting cover crops and rotation
crops can protect the soil, increase water infiltration, and de-
crease nutrient runoff and erosion (Tully and McAskill 2020).
Also, these crops positively affect the soil quality, nutrient
capturing, as well as aid in recycling nutrients instead of
leaching through the soil (Sivaranjani and Rakshit 2019).
Trap crops that are also used for integrated pest management
in organic farming can help in increasing the water-retaining
capacity, decreasing water consumption in agriculture
(Hassanali et al. 2008).

Various soil organisms and active organic matter can in-
crease nutrients storing capacity in the soil and reduce possible
transportation of these nutrients to ground or surface waters.
Eventually, the functions through which nutrients conserve
inside the crop fields will protect the environmental quality
of adjacent streams, lakes, and rivers (Sivaranjani and Rakshit
2019).

Challenges in organic farming

Although organic farming is considered environmentally
friendly, however, there are limitations associated with it. As
a last resort to manage pest infestations in organic fields, some
organic pesticides are allowed to be used, namely, rotenone,
pyrethrum; both are plant extracts that are largely used in
organic fields (Isman 2006; Sivaranjani and Rakshit 2019).
Similar to synthetic pesticides, not only are they potent against
pests, but also were found to be toxic to fish, humans, and
animals. Thus, the over-application of organic pesticides
might lead to runoffs from the field and contaminate nearby
water bodies, which is well documented for synthetic
pesticides.

Rotenone’s mode of action is to inhibit the electron trans-
port chain and prevent energy production, so it is also known
as mitochondrial poison (Hollingworth et al. 1994). It is found
to be potent against insects upon being ingested. Similar to
synthetic insecticides, such as DDT, pure rotenone is also
found to be acutely toxic to mammals; however, it is much
less toxic present in formulated products (Isman 2006). With
respect to humans, rotenone was recognized to be neurotoxic
and had also been linked to Parkinson’s disease (Sherer et al.
2003; Tanner et al. 2011). A study concerning on stability of
rotenone in a field application showed it to have a half-life of
four days, and, during the time of harvesting, rotenone resi-
dues were detected above the tolerance level (Cabras et al.
2002). Moreover, the study also highlighted the increase in
residues concentration in the oil derived from the crop. Similar
to rotenone, pyrethrum is also found to be neurotoxic, and it
inhibits the voltage-gated sodium channels in nerve axons
(Meurer-Grimes 1996). When pure pyrethrum is used, it is
classified as moderately toxic to mammals, and thus, this
needs to be used with caution.

A systemic study by Bahlai et al. 2010, indicated that or-
ganic pesticides not necessarily was better than synthetic ones.
As organic pesticides were not as efficient as synthetic ones, a
large amount had to be applied in fields that affected all the
insects in the fields irrespective of whether the insect is a pest
or a predatory insect. The predatory insects are beneficial and
protect the crops from pests by feeding on them, so the lack of
specificity in organic pesticides caused more harm to the en-
vironment (Bahlai et al. 2010).
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As organic farming productivity is low, a bigger area needs
to be irrigated to get the same amount of production as in
traditional farming (Mcgee 2015). The study of Tuomisto
et al. 2012, estimated that organic farming would take up
about 84% more land on average in relative to conventional
farming (Tuomisto et al. 2012). Thus, the cultivation of larger
areas would cause more deforestation and will have a detri-
mental effect on the environment. Moreover, to cover the area
in organic farming, more heavy agro-machinery will be used
that might lead to an increase in greenhouse gas emissions
(Mcgee 2015).

The use of manure in organic farming, instead of synthetic
fertilizers, is a very common practice that might be of concern
to human health. These manures are often found to contain
microbial pathogens such as E. coli, Salmonella, and can con-
taminate fresh fruits and vegetables (Buchanan and Doyle
1997). Root crops and leafy vegetables are prone to be the
carrier of these pathogens that can cause gastrointestinal prob-
lems in humans, especially in children (Beuchat and Ryu
1997). Moreover, due to the proximity of fields near water
bodies, there is a high chance of frequently contaminating
the water, decreasing the reusability of water (Sivaranjani
and Rakshit 2019). Furthermore, a recent study analyzed the
post-harvested shelf-life of organically grown fruit, apple, and
reported that they tend to have less shelf-life upon storage
(Wassermann et al. 2019). The main reason for getting spoiled
fast can be the heavy usage of manures that is rich in micro-
organisms along with no usage of chemical preservatives in
organic farming.

Management of organic farming also faces challenges re-
lated to molecular ecological interactions. The use of
aluminum-based yellow mulches in Israel was highly detri-
mental for whiteflies that attracted whiteflies onto the hot film,
but the same system was not effective in Florida that might be
due to change in behaviour of aphids resulting from climatic
differences (Frank and Liburd 2005; Lapidot et al. 2014).
Similar studies on the use of biocontrol agents were reported
to be ineffective in some conditions (Van Diepeningen et al.
2005; van Bruggen et al. 2016). This may have occurred due
to the large microbial diversity of organically managed soil
that can dilute the effectiveness of biocontrol agents (Hiddink
et al. 2005).

Moreover, a recent study has reported that the induction of
the phytohormones pathway, mediating the defence response
against pests and pathogens, is highly complex that gets mod-
ulated by non-vector insects and also by order of their inter-
actions with the plants (Basu et al. 2021). Furthermore, the
same research group also showed that the biocontrol agents,
predators, contributed to controlling the insect population;
however, the rapid movement of insects in the presence of
predators may lead to either an increase or decrease in patho-
gen transmission in plants depending upon the kind of preda-
tion risk (Lee et al. 2021a, b). Thus, studies should be

implemented before releasing predators in a field as it may
not always cause a decrease in pathogen transmission.
Therefore, it should be noted that the kind of organic manage-
ment implemented in one place may not be effective in other
places and may vary according to abiotic and biotic
conditions.

Future perspectives

For human health, it is of utmost importance to have easy
access to clean and good quality water. However, due to the
rapid increase in population, the availability of clean water has
become an issue. Surprisingly, a recent report of UN, 2019,
highlighted that by the end of this century, 2100, the rise in
population would mostly occur in developing countries, e.g.,
India, China, Nigeria, Pakistan, D R Congo (United Nations
2019). In other words, this increase in population will happen
mostly in countries where the natural resources are already
limited and severely challenged by water shortages and poor
quality of water. In addition, the economy of developing
countries is heavily dependent on agriculture that uses about
70% of the world’s accessible freshwater, and to keep up with
the population growth while mitigating the hunger issue, it is
expected to increase crop production by 100%. Furthermore,
suggesting a critical role of agriculture in using the water
efficiently to have sustainable growth where enough crop
and clean water is accessible for humans.

Here we did a comprehensive review of literature focusing
on organic farming, which in general is considered to be en-
vironmentally friendlier than conventional farming. While
synthesizing the literature on organic farming’s effect on food
toxicity, water reusability, and the underlying molecular
mechanism that highlights the low risks of pests and diseases
in organic crops, we identified some knowledge gaps that
would direct future research directions.

To have sustainable development, it is a prerequisite to
follow practices that are not detrimental to the environment,
but at the same time, allows an increase in crop production.
Data indicate that, in the presence of agrochemicals rich in
nitrogen and phosphorus, more vegetative growth can be de-
tected in plants. Consequently, there will be more productivity
per unit area that is often limited in organic farming, and it is
only implemented on an industrial scale which covers more
land. Due to the use of the large area to grow organic crops, it
is estimated that organic crops require more water to have
similar productivity as in conventional farming, which would
cause more shortage of clean water for human consumption.
Therefore, the focus should be given to increase the produc-
tivity in organic farming per unit area and not only on inte-
grated pest management that would be valuable to farmers,
especially from developing countries that own small lands.
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Although practices are encouraged to keep the risk of pests
and diseases low in organic fields, due to some unavoidable
circumstances, organic pesticides had to be used to save the
crops and prevent losses to farmers. Notwithstanding, plant-
derived products are currently used in organic pesticides, e.g.,
rotenone, pyrethrum; their lack of specificity and being potent
against unintended insects make them toxic for the environ-
ment. The use of Bt toxin can be one such alternative that is
specific to certain pests but is not much implemented in or-
ganic farming. Considerable interests have been directed to-
wards microbial control of pests, particularly by means of Bt,
as the most successful entomopathogenic bacterium. Due to
the high and specific insecticidal activity of Bt toxins, several
studies have been focused on the isolation and characteriza-
tion of Bt strains (Khorramnejad et al. 2018b). Identification
of novel insecticidal proteins (Khorramnejad et al. 2020b)
with higher insecticidal activity (Khoramnezhad et al. 2016),
a different mode of action (Khorramnejad et al. 2020a), new
specificities, and a broader range of toxicity (Khorramnejad
et al. 2018a) are of crucial importance for the efficient man-
agement of insect pests. Also, more considerations have to be
given to bio-insecticides utilization as a part of integrated pest
management strategies and organic farming to diminish the
application of chemical insecticides. Currently, a relevant state
of the art applied research is going on in Iran, where different
strains of Bt-based bio-pesticides are being developed and

registered by the Nature Biotechnology Company (Biorun)
(Khorramnejad et al. 2021).

Another critical gap that was noticeable was the lack of
integration of molecular knowledge into organic farming
that would not only make organic farming more efficient
but can also be exploited to estimate the success of integrat-
ed pest management in different environments. A recent
novel study by Machado et al. 2021 showed the role of
primary and secondary metabolites as chemical cues that
assists in pests foraging by helping them to locate hosts
(plants) in a short distance (Machado et al. 2021). There
are similar other studies that had identified chemical cues
that can be used as the “push-pull strategy” under the inte-
grated pest management program in organic farming.
Moreover, a spin-off of this information can also be used
that is using the molecular cues as markers; quantification
of these markers can tell us at the early stages of implemen-
tation if the pest management program is working in differ-
ent field conditions or not. The recent study of Arce et al.
2021 is of importance here which showed corn rootworm
exploits carbon dioxide (CO2) gradient to locate distant
host plants; thus, the quantification of CO2 in the soil can
be a candidate marker to manage corn rootworms in fields
(Arce et al. 2021). In the future, it would be interesting to
see how much molecular knowledge is exploited for the
benefit of organic farming.

Fig. 1 An illustration highlighting the critical role of organic farming in sustainable development over conventional farming. Organic farming exploits
natural resources instead of synthetic chemicals to manage pests and pathogens in fields subsequently, decreasing food toxicity and water contamination
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In the coming years, it is expected that the production of
organic food would increase. Thus, adequate attention should
be given to increase the shelf-life of food upon storage. Lack
of use of synthetic chemicals on organic goods makes them
susceptible to faster spoiling. Preservatives that are derived
from plants, rich in anti-microbial and antioxidant activity,
should help in extending the storage time of food so that
consumers can get a good quality of food (Ng et al. 2019).
A recent study by Ng et al. 2019 suggested the use of flavo-
noids as natural food preservatives and reported that the ap-
plication of flavonoids increases the storage life by two days.
Moreover, as there is no information on toxicity associated
with flavonoids make them a good alternative as food preser-
vatives (Ng et al. 2019). Subsequently, this kind of related
research should be encouraged that demonstrates the use of
natural preservatives while not diminishing the quality of wa-
ter, keeps the food toxicity at a low level, and mitigate the
impending hunger problem.

Conclusion

In the current era of global warming, agriculture has a sheer
responsibility to use water in a highly efficient manner that
does not diminish the quality of water. Here, while highlight-
ing the benefits of organic farming over conventional farming
in terms of decreasing food toxicity, increasing water reusabil-
ity, and keeping pests and pathogens’ risk low, we also
stressed over the current challenges that need to be overcome
to have sustainable development. The transition from conven-
tional farming to organic farming would take time which is a
prerequisite to enrich the soil microbiota and maintain ade-
quate chemicals level to sustain organic crops with fewer
pathogens pressure. This transition period may prolong for
about 5 years, during which there will be no crop production
(van Bruggen et al. 2016). However, to sum up all the pros
and cons in terms of environmental friendliness, organic farm-
ing still outcompetes conventional farming in the long term
(Fig. 1). Though the studies show organic farming requires
more water per productivity, due to less chemical usage (al-
most negligible), the water would be contamination-free and
highly reusable (Fig. 1). Moreover, organic farming also in-
creases the water holding capacity of the soil that would de-
crease the runoffs and leaching of soil nutrients and keep
water bodies clean (Fig. 1). Nevertheless, more focus needs
to be given to research that increases productivity, enriches
food with more beneficial nutrients, and keeps the price of
food minimal that is affordable to everyone.
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